skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Yuelin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A method to improve protein function prediction for sparsely annotated PPI networks is introduced. The method extends the DSD majority vote algorithm introduced by Cao et al. to give confidence scores on predicted labels and to use predictions of high confidence to predict the labels of other nodes in subsequent rounds. We call this a majority vote cascade. Several cascade variants are tested in a stringent cross-validation experiment on PPI networks from S. cerevisiae and D. melanogaster, and we show that for many different settings with several alternative confidence functions, cascading improves the accuracy of the predictions. A list of the most confident new label predictions in the two networks is also reported. Code and networks for the cross-validation experiments appear at http://bcb.cs.tufts.edu/cascade. 
    more » « less
  2. A method to improve protein function prediction for sparsely annotated PPI networks is introduced. The method extends the DSD majority vote algorithm introduced by Cao et al. to give confidence scores on predicted labels and to use predictions of high confidence to predict the labels of other nodes in subsequent rounds. We call this a majority vote cascade. Several cascade variants are tested in a stringent cross-validation experiment on PPI networks from S. cerevisiae and D. melanogaster, and we show that for many different settings with several alternative confidence functions, cascading improves the accuracy of the predictions. A list of the most confident new label predictions in the two networks is also reported. Code, networks for the cross-validation experiments, and supplementary figures and tables appear at http://bcb.cs.tufts.edu/cascade. 
    more » « less